Prof. Dr. Alfred Toth

Disäquilibrale Aufbrechung systemischer Relationen

1. Wie in Toth (2012a) gezeigt, bedeutet ein Zeichen aus systemischer Sicht, daß Außen auf Innen abgebildet wird

$$Z := (A \rightarrow I).$$

Geht man also davon aus, daß Innen ins Außen penetriert, dann haben wir die zu Z konverse Relation

$$Z^{o} = (I \rightarrow A)$$

Sei nun eine systemische Zeichenrelation (Toth 2012b) definiert als

$$ZR_{svs} = ((A \rightarrow I) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow I))),$$

dann gibt es wegen der abstrakten Struktur von ZR_{sys} genau 4 Möglichkeiten, wo auf systemisch-repräsentationeller Ebene Innen ins Außen dringen kann

1.
$$ZR_{pen1} = ((I \rightarrow A) \rightarrow (A \rightarrow I), (((A \rightarrow I) \rightarrow A) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow I)))$$

2.
$$ZR_{pen2} = ((A \rightarrow I) \rightarrow (I \rightarrow A) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow I)))$$

3.
$$ZR_{pen3} = ((A \rightarrow I) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow (I \rightarrow A) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow I)))$$

4.
$$ZR_{pen4} = ((A \rightarrow I) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow (((A \rightarrow I) \rightarrow A) \rightarrow I)) \rightarrow (I \rightarrow A))$$

2. In dem bisher entwickelten Penetrationssystem wird allerdings vorausgesetzt, daß das ins Außen eindringende Innen – oder auch konvers: das ins Innen eindringende Außen in Bezug auf die zwei Dimensionen der den systemischen Repräsentationssystemen unterliegenden relationalen Einbettungszahlen (REZ, vgl. Toth 2012c) homogen ist. Eine REZ-Relation wurde dabei definiert als

$$_{3}^{3}R_{REZ} = = [[1, a], [[1_{-1}, b], [1_{-2}, c]]],$$

und eine REZ ist eine zweidimensionale Zahl der Form

REZ =
$$<1, _{n}]>,$$

d.h. wir müssen unterscheiden zwischen Einbettungs- und Relations-Disäquilibria. Das Einbettungs-Disäquilibrium¹ ist definiert als

$$_{3}^{3}R_{REZ} := [[1, a], [[1_{-1}, b], [1_{-2}, c]], ..., [_{n} 1_{-(n-1)}, m]$$

mit a, b, c \in {1, 2, 3} sowie n, m $\rightarrow \infty$, für die somit max{1, 2, 3} = 3 < (n-1).

Das Relations-Disäquilibrium ist definiert als

$$_{3}^{3}R_{REZ} = [[1, a], [[1_{-1}, b], [1_{-2}, c]]]$$

mit a, b, $c \in \{1, 2, 3, ..., n\}$ für $n \rightarrow \infty$ gilt.

Nun ist von den oben gezeigten Penetrationen die Abbildung (I \rightarrow A) betroffen, d.h. die Umkehrung der systemischen Zeichenintroduktion. Wegen der Nichtkonversivität der REZ (vgl. Toth 2012d) haben wir daher für die einzelnen Partialrelationen von 3 ₃R_{REZ}:

$$[1, a]^0 = [1_{-a}, 1]$$

$$[1_{-1}, b]^{o} = [1_{-b}, 2]$$

$$[1_{-2}, c]^0 = [1_{-c}, 3]$$

...

$$[1_{-(n-1)}, m] = [1_{-m}, n],$$

d.h. die rechts von den Gleichheitszeichen stehenden Partialrelationen sind genau die "atomaren" möglichen Eindringlinge (Einzelkämpfer) nach $^3{}_3R_{REZ}$, wobei es natürlich auch eine sehr große Anzahl von "molekularen" Penetrationsrelationen gibt (Guerilla), d.h. Abbildungen der REZ-Abbildungen auf REZ-Abbildungen … .

¹ Der Name wurde bewußt (etymologisch falsch) gewählt, daß durch dis-äqui- das Resultat des Zeichenprozesses als einer Penetration, d.h. Störung deutlich wird.

Literatur

Toth, Alfred, Penetration des Innen ins Außen. In: Electronic Journal for Mathematical Semiotics, 2012a

Toth, Alfred, Universale Zeichenrelationen. In: Electronic Journal for Mathematical Semiotics, 2012b

Toth, Alfred, Relationale Einbettungszahlen. In: Electronic Journal for Mathematical Semiotics, 2012c

Toth, Alfred, Nicht-äquilibrierte Relationen über relationalen Einbettungszahlen. In: Electronic Journal for Mathematical Semiotics, 2012d

23.2.2012